Can prophylactic dextrose gel prevent babies from becoming hypoglycemic?

Can prophylactic dextrose gel prevent babies from becoming hypoglycemic?

I have written a number of times already on the topic of dextrose gels. Previous posts have largely focused on the positive impacts of reduction in NICU admissions, better breastfeeding rates and comparable outcomes for development into childhood when these gels are used. The papers thus far have looked at the effectiveness of gel in patients who have become hypoglycemic and are in need of treatment. The question then remains as to whether it would be possible to provide dextrose gel to infants who are deemed to be at risk of hypoglycemia to see if we could reduce the number of patients who ultimately do become so and require admission.

Answering that question

Recently, Coors et al published Prophylactic Dextrose Gel Does Not Prevent Neonatal Hypoglycemia: A Quasi-Experimental Pilot Study. What they mean by Quasi-Experimental is that due to availability of researchers at off hours to obtain consent they were unable to produce a randomized controlled trial. What they were able to do was compare a group that had the following risk factors (late preterm, birth weight <2500 or >4000 g, and infants of mothers with diabetes) that they obtained consent for giving dextrose gel following a feed to a control group that had the same risk factors but no consent for participation. The protocol was that each infant would be offered a breastfeed or formula feed after birth followed by 40% dextrose gel (instaglucose) and then get a POC glucose measurement 30 minutes later. A protocol was then used based on different glucose results to determine whether the next step would be a repeat attempt with feeding and gel or if an IV was needed to resolve the issue.

To be sure, there was big hope in this study as imagine if you could prevent a patient from becoming hypoglycemic and requiring IV dextrose followed by admission to a unit.  Sadly though what they found was absolutely no impact of such a strategy.  Compared with the control group there was no difference in capillary glucose after provision of dextrose gel (52.1 ± 17.1 vs 50.5 ± 15.3 mg/dL, P = .69).  One might speculate that this is because there are differing driving forces for hypoglycemia and indeed that was the case here where there were more IDMs and earlier GA in the prophylactic group.  On the other hand there were more LGA infants in the control group which might put them at higher risk.  When these factors were analyzed though to determine whether they played a role in the lack of results they were found not to. Moreover, looking at rates of admission to the NICU for hypoglycemia there were also no benefits shown.  Some benefits were seen in breastfeeding duration and a reduction in formula volumes consistent with previous studies examining the effect of glucose gel on both which is a win I suppose.

It may also be that when you take a large group of babies with risks for hypoglycemia but many were never going to become hypoglycemic, those who would have had a normal sugar anyway dilute out any effect.  These infants have a retained ability to produce insulin in response to a rising blood glucose and to limit the upward movement of their glucose levels.  As such what if the following example is at work? Let’s say there are 200 babies who have risk factors for hypoglycemia and half get glucose gel.  Of the 100 about 20% will actually go on to have a low blood sugar after birth.  What if there is a 50% reduction in this group of low blood sugars so that only 10 develop low blood glucose instead of 20.  When you look at the results you would find in the prophylaxis group 10/100 babies have a low blood sugar vs 20/100.  This might not be enough of a sample size to demonstrate a difference as the babies who were destined not to have hypoglycemia dilute out the effect.  A crude example for sure but when the incidence of the problem is low, such effects may be lost.

A Tale of Two Papers

This post is actually part of a series with this being part 1.  Part 2 will look at a study that came up with a different conclusion.  How can two papers asking the same question come up with different answers?  That is the story of medicine but in the next part we will look at a paper that suggests this strategy does work and look at possible reasons why.

Should all babies be screened for hypoglycemia?

Should all babies be screened for hypoglycemia?

Hypoglycemia has to be one of the most common conditions that we screen for or treat in the NICU and moreover in newborn care in general. The Canadian Pediatric Society identifies small for gestational age infants (weight <10th percentile), large for gestational age (LGA; weight > 90th percentile) infants, infants of diabetic mothers (IDMs) and preterm infants as being high risk for hypoglycemia. It is advised then to screen such babies in the absence of symptoms for hypoglycemia 2 hours after birth after a feed has been provided (whether by breast or bottle). I am sure though if you ask just about any practitioner out there, they will tell you a story about a baby with “no risk factors” who had hypoglycemia. These one-off cases have the effect though of making us want to test everyone for fear that we will miss one. If that is the case though should we be recommending that all babies get at least one check?

The Canadian Pediatric Surveillance Program (CPSP)

The CPSP is a branch of the Canadian Pediatric Society that “provides an innovative means to undertake active paediatric surveillance and increase awareness of childhood disorders that are high in disability, morbidity, mortality and economic cost to society, despite their low frequency. I submit my surveys each month as i hope other Canadian Pediatricians do and help to determine the impact of these rare conditions in our Canadian population.  Like with any survey we rely on people taking the time to submit but there is always the risk that what is being sent in under represents the true burden of illness as some cases may not be identified.  Having said that, it is the best we have!

Turning our attention to hypoglycemia in low risk newborns

From April 2014 to March 2016 the CPSP searched for these types of patients and just published the results of their findings in Hypoglycemia in unmonitored full-term newborns—a
surveillance study by Flavin MP et al.  What I like about the study is that they have been able to look at a group of babies that fall outside those identified as being at risk in the CPS statement Screening guidelines for newborns at risk for low blood glucose.  They were looking for severe hypoglycemia by using a threshold of < 2.0 mmol/L (36 mg/dl) and all infants must have received IV dextrose.  In the end after excluding ineligible cases they had 93 babies who met criteria.  Based on the Canadian birth rate this translates to an incidence of 1 in every 8378 births. These babies were all supposed to be low risk but there were in fact clues that while not strictly identified as risks in the CPS statement could have increased the likelihood of a low blood glucose.  Twenty three percent of mothers had maternal hypertension and another 23% were obese while 47% had excessive weight gain during pregnancy.  Furthermore, 8% of mothers were treated with a beta blocker (most likely labetalol I would think) during pregnancy which is a risk factor for hypoglycemia although not specifically cited in the current CPS statement.

A concerning finding as well was the likelihood of severe symptoms in this group on presentation. Twenty percent presented with major clinical signs (seizure, apnea or cyanosis). Median glucose levels at presentation were much lower than those without major signs (median = 0.8 mmol/L, interquartile range [IQR] = 0.5 versus 1.6 mmol/L, IQR = 0.7; P < 0.001).  Lastly, providers were asked about neurodevelopmental concerns at discharge approximately 20% were thought to have issues.

Are these patients really low risk though?

Twenty five percent of the patients submitted had a birth weight less than the 10%ile for GA.  These patients as per the CPS guideline recommendations are actually considered at risk and should have been screened.  The second issue to address has to do with the way we diagnose diabetes in pregnancy.  All women are provided with the oral glucose tolerance test around 28 weeks of pregnancy. No test is perfect but it is the best we have.  Women who have excessive weight gain in pregnancy (almost 50% of the cohort) are at higher risk of developing diabetes or some degree of insulin resistance as are those who are classified as obese.  I have long suspected and think it may be the case here that some babies who do not meet the criteria for screening as their mothers do not have a diagnosis of GDM actually are at risk due to some degree of insulin resistance or perhaps their mothers develop GDM later.  The evidence for this are the occasional LGA babies who are born to mothers without a GDM diagnosis but who clearly have been exposed to high insulin levels as they behave like such affected infants with poor feeding and low sugars in the newborn period.  The authors here comment on those that were SGA but how many in this cohort were LGA?

The effect of hypertension can also not be minimized which was present in about a quarter of patients.  These babies while not being officially SGA may have experienced a deceleration in weight gain in the last few weeks but remained above the 10%ile.  These infants would not have the glycogen stores to transition successfully but would not be targeted as being at risk by the current definitions.

Should we be screening everyone then?

If we acknowledge that about 25% were IUGR in this study (<10%ile) and should have been screened, the expected rate would be 1:1170 births alone.  In Manitoba with our 17000 births a year we would capture about two extra babies a year which translates into a low of pokes for a lot of healthy babies.  Given the further information that 1:5 babies who are identified may have neurodevelopmental concerns it would take about 2-3 years of testing to prevent one concern.  That pick up rate for me is far too low to subject so many babies to testing.  What this study though does highlight is the need to view risk factors a little less strictly.  Babies who are almost meeting the criteria for being LGA or those whose mother’s have taken lebetalol should have a low threshold for screening.  Should hypertension on medications, excessive maternal weight gain or obesity in the mother be considered a risk?  What I didn’t see in the end of this study were patients who truly were AGA, being born to healthy non overweight mothers presenting as high risk.

Maybe what is really needed based on this study is to re-evaluate what we consider at risk.  In the meantime, maybe we should be testing a few extra babies who fall into these “lesser” risk categories.  Better yet a study isolating such patients and looking at the frequency of hypoglycemia in these patients is warranted to get a better idea of whether they are indeed risks.

Screening for congenital heart disease; will early discharge be its ruin?

Screening for congenital heart disease; will early discharge be its ruin?

In 2017 the Canadian Pediatric Society published the practice point Pulse oximetry screening in newborns to enhance detection of critical congenital heart disease.  In this document we recommended universal screening for CCHDs but stressed the following:

“Recognizing that delivery and time of discharge practices vary across Canada, the timing of testing should be individualized for each centre and (ideally) occur after 24 hours postbirth to lower FP results. And because the intent is to screen newborns before they develop symptoms, the goal should be to perform screening before they reach 36 hours of age.”

This recommendation was put in place to minimize the number of false positive results and prevent Pediatricians and Cardiologists nationwide from being inundated with requests to rule out CCHD as earlier testing may pick up other causes for low oxygen saturation such as TTN.  The issue remains though that many patients are indeed discharged before 24 hours and in the case of midwife deliveries either in centres or in the home what do we do?

A Population Study From the Netherlands May Be of Help Here

Researchers in the Netherlands had a golden opportunity to answer this question as a significant proportion of births occur there in the home under the care of a midwife. Accuracy of Pulse Oximetry Screening for Critical Congenital Heart Defects after Home Birth and Early Postnatal Discharge by Ilona C. Narayen et al was published this month in J Peds. About 30% of births are cared for by a midwife with about 20% occurring in the home. The authors chose to study this population of infants who were all above 35 weeks gestation and not admitted to an intensive care nor had suspicion of CCHD prior to delivery. The timing of the screening was altered from the typical 24-48 hours to be two time points to be more reflective of midwives practice. All patients were recruited after birth with the use of information pamphlets. The prospective protocol was screening on 2 separate moments: on day 1, at least 1 hour after birth, and on day 2 or 3 of life. The criteria for passing or failing the test are the same as those outlined in the CPS practice point. As part of the study, patients with known CCHDs were also screened separately as a different group to determine the accuracy of the screening test in patients with known CCHD.


There were nearly 24000 patients born during this period. Only 49 cases of CCHD were identified by screening and of these 36 had been picked up antenatally giving a detection rate of 73%. Out of 10 patients without prenatal diagnosis who also had saturation results available the detection rate was 50%. Three of the misses were coarctation of the aorta (most likely diagnosis to be missed in other studies), pulmonary stenosis (this one surprises me) and TGA (really surprises me). The false-positive rate of pulse oximetry screening (no CCHD) was 0.92%. The specificity was over 99% meaning that if you didn’t have CCHD you were very likely to have a negative test. Not surprisingly, most false- positives occurred on day 1 (190 on day 1 vs 31 infants on day 2 or 3). There were five patients missed who were not detected either by antenatal ultrasound. These 5 negatives ultimately presented with symptoms at later time points and all but one survived (TGA) so out of 24000 births the system for detecting CCHD did reasonably well in enhancing detection as they picked up another 5 babies that had been missed antenatally narrowing the undetected from 10 down to 5.

Perhaps the most interesting thing about the study though is what they also found. As the authors state: “Importantly, 61% (134/221) of the infants with false-positive screenings proved to have significant noncardiac illnesses re- quiring intervention and medical follow-up, including infection/ sepsis (n = 31) and PPHN or transient tachypnea of the newborn (n = 88)”

There are certainly detractors of this screening approach but remember these infants were all thought to be asymptomatic. By implementing the screening program there was opportunity to potentially address infants care needs before they went on to develop more significant illness. Under appreciated TTN could lead to hypoxia and worsen and PPHN could become significantly worse as well. I think it is time to think of screening in this way as being more general and not just about finding CCHD. It is a means to identify children with CCHD OR RESPIRATORY illnesses earlier in their course and do something about it!


Capnography or colorimetric detection of CO2 in the delivery suite.  What to choose?

Capnography or colorimetric detection of CO2 in the delivery suite. What to choose?

For almost a decade now confirmation of intubation is to be done using detection of exhaled CO2. The 7th Edition of NRP has the following to say about confirmation of ETT placement “The primary methods of confirming endotracheal tube placement within the trachea are detecting exhaled CO2 and a rapidly rising heart rate.” They further acknowledge that there are two options for determining the presence of CO2 “There are 2 types of CO2 detectors available. Colorimetric devices change color in the presence of CO2. These are the most commonly used devices in the delivery room. Capnographs are electronic monitors that display the CO2 concentration with each breath.” The NRP program stops short of recommending one versus the other. I don’t have access to the costs of the colorimetric detectors but I would imagine they are MUCH cheaper than the equipment and sensors required to perform capnography using the NM3 monitor as an example. The real question though is if capnography is truly better and might change practice and create a safer resuscitation, is it the way to go?

Fast but not fast enough?

So we have a direct comparison to look at. Hunt KA st al published Detection of exhaled carbon dioxide following intubation during resuscitation at delivery this month. They started from the standpoint of knowing from the manufacturer of the Pedicap that it takes a partial pressure of CO2 of 4 mm Hg to begin seeing a colour change from purple to yellow but only when the CO2 reaches 15 mm Hg do you see a consistent colour change with that device. The capnograph from the NM3 monitor on the other hand is quantitative so is able to accurately display when those two thresholds are reached. This allowed the group to compare how long it took to see the first colour change compared to any detection of CO2 and then at the 4 and 15 mm Hg levels to see which is the quicker method of detection. It is an interesting question as what would happen if you were in a resuscitation and the person intubates and swears that they are in but there is no colour change for 5, 10 or 15 seconds or longer? At what point do you pull the ETT? Compare that with a quantitative method in which there is CO2 present but it is lower than 4. Would you leave the tube in and use more pressure (either PIP/PEEP or both?)? Before looking at the results, it will not shock you that ANY CO2 should be detected faster than two thresholds but does it make a difference to your resuscitation?

The Head to Head Comparison

The study was done retrospectively for 64 infants with a confirmed intubation using the NM3 monitor and capnography.  Notably the centre did not use a colorimetric detector as a comparison group but rather relied on the manufacturers data indicating the 4 and 15 mm Hg thresholds for colour changes.  The mean age of patients intubated was 27 weeks with a range of 23 – 34 weeks.  The results I believe show something quite interesting and informative.

Median time secs (range)
Earliest CO2 detection 3.7 (0 – 44s)
4 mm Hg 5.3 (0 – 727)
15 mm Hg 8.1 (0 – 727)

I wouldn’t worry too much about a difference of 1.6 seconds to start getting a colour change but it is the range that has me a little worried.  The vast majority of the patients demonstrated a level of 4 or 15 mm Hg within 50 seconds although many were found to take 25-50 seconds.  When compared to a highest level of 44 seconds in the first detection of CO2 group it leads one to scratch their head.  How many times have you been in a resuscitation and with no CO2 change you keep the ETT in past 25 seconds?  Looking closer at the patients, there were 12 patients that took more than 30 seconds to reach a threshold of 4 mm Hg.  All but one of the patients had a heart rate in between 60-85.  Additionally there was an inverse relationship found between gestational age and time to detection.  In other words, the smallest of the babies in the study took the longest to establish the threshold of 4 and 15 mm Hg.

Putting it into context?

What this study tells me is that the most fragile of infants may take the longest time to register a colour change using the colorimetric devices.  It may well be that these infants take longer to open up their pulmonary vasculature and deliver CO2 to the alveoli.  As well these same infants may take longer to open the lung and exhale the CO2.  I suppose I worry that when a resuscitation is not going well and an infant at 25 weeks is bradycardic and being given PPV through an ETT without colour change, are they really not intubated?  In our own centre we use capnometry in these infants (looks for a wave form of CO2) which may be the best option if you are looking to avoid purchasing equipment for quantitative CO2 measurements.  I do worry though that in places where the colorimetric devices are used for all there will be patients who are extubated due to the thought that they in fact have an esophageal intubation when the truth is they just need time to get the CO2 high enough to register a change in colour.

Anyways, this is food for thought and a chance to look at your own practice and see if it is in need of a tweak…

If A Little Caffeine Is Good Is A Lot Better?

If A Little Caffeine Is Good Is A Lot Better?

Caffeine seems to be good for preterm infants.  We know that it reduces the frequency of apnea in the this population and moreover facilitates weaning off the ventilator in a shorter time frame than if one never received it at all.  The earlier you give it also seems to make a difference as shown in the Cochrane review on prophylactic caffeine. When given in such a fashion the chances of successful extubation increase. Less time on the ventilator not surprisingly leads to less chronic lung disease which is also a good thing.

I have written about caffeine more than once though so why is this post different?  The question now seems to be how much caffeine is enough to get the best outcomes for our infants.  Last month I wrote about the fact that as the half life of caffeine in the growing preterm infant shortens, our strategy in the NICU might be to change the dosing of caffeine as the patient ages.  Some time ago though I wrote about the use of higher doses of caffeine and in the study analyzed warned that there had been a finding of increased cerebellar hemorrhage in the group randomized to receive the higher dosing.  I don’t know about where you work but we are starting to see a trend towards using higher caffeine base dosing above 5 mg/kg/d.  Essentially, we are at times “titrating to effect” with dosing being as high as 8-10 mg/kg/d of caffeine base.

Does it work to improve meaningful outcomes?

This month Vliegenthart R et al published a systematic review of all RCTs that compared a high vs low dosing strategy for caffeine in infants under 32 weeks at birth; High versus standard dose caffeine for apnoea: a systematic review. All told there were 6 studies that met the criteria for inclusion.  Low dosing (all in caffeine base) was considered to be 5- 15 mg/kg with a maintenance dose of 2.5 mg/kg to 5 mg/kg.  High dosing was a load of 5 mg/kg to 40 mg/kg with a maintenance of 2.5 mg/kg to 15 mg/kg.  The variability in the dosing (some of which I would not consider high at all) makes the quality of the included studies questionable so a word of warning that the results may not truly be “high” vs “low” but rather “inconsistently high” vs. “inconsistently low”.

The results though may show some interesting findings that I think provide some reassurance that higher dosing can allow us to sleep at night.

On the positive front, while there was no benefit to BPD and mortality at 36 weeks PMA they did find if they looked only at those babies who were treated with caffeine greater than 14 days there was a statistically significant difference in both reduction of BPD and decreased risk of BPD and mortality.  This makes quite a bit of sense if you think about it for a moment.  If we know that caffeine improves the chances of successful extubation and we also know it reduces apnea, then who might be on caffeine for less than 2 weeks?  The most stable of babies I would expect!  These babies were all < 32 weeks at birth.  What the review suggests is that those babies who needed caffeine for longer durations benefit the most from the higher dose.  I think I can buy that.

On the adverse event side, I suppose it shouldn’t surprise many that the risk of tachycardia was statistically increased with an RR of 3.4.  Anyone who has explored higher dosing would certainly buy that as a side effect that we probably didn’t need an RCT to prove to us.  Never mind that, have you ever taken your own pulse after a couple strong coffees in the morning?

What did it not show?

It’s what the study didn’t show that is almost equally interesting.  The cerebellar hemorrhages seen in the study I previously wrote about were not seen at all in the other studies.  There could be a lesson in there about taking too much stock in secondary outcomes in small studies…

Also of note, looking at longer term outcome measures there appears to be no evidence of harm when the patients are all pooled together.  The total number of patients in all of these studies was 620 which for a neonatal systematic review is not bad.  A larger RCT may be needed to conclusively tell us what to do with a high and low dosing strategy that we can all agree on.  What do we do though in the here and now?  More specifically, if you are on call tomorrow and a baby is on 5 mg/kg/d of caffeine already, will you intubate them if they are having copious apneic events or give them a higher dose of caffeine when CPAP or NIPPV that they are already on isn’t cutting it?  That is where the truth about how you feel about the evidence really comes out.  These decisions are never easy but unfortunately you sometimes have to make a decision and the perfect study hasn’t been done yet.  I am not sure where you sit on this but I think this study while certainly flawed gives me some comfort that nothing is truly standing out especially given the fact that some of the “high dose” studies were truly high.  Will see what happens with my next patient!

Perhaps it is time to change the way we use caffeine in the NICU.

Perhaps it is time to change the way we use caffeine in the NICU.

This has been a question that has befuddled Neonatologists for years.  Get ten of us in a room and you will get a variety of responses ranging from (talking about caffeine base) 2.5 mg/kg/day to 10 mg/kg/day.  We will espouse all of our reasons and question the issue of safety at higher doses but in the end do we really know?  As I was speaking to a colleague in Calgary yesterday we talked about how convinced we are of our current management strategies but how we both recognize that half of what we think we know today we will be questioning in 10 years.  So how convinced should we really be about caffeine?

Even the Cochrane Review Suggests There Is Something Amiss

Back in 2010 the Cochrane Collaboration examining 6 trials on caffeine for treating apnea of prematurity concluded “Methylxanthine is effective in reducing the number of apnoeic attacks and the use of mechanical ventilation in the two to seven days after starting treatment.” Notice the bolded section.  Two to seven days.  Interesting that we don’t see the effect last in perpetuity.  Why might that be?  Do babies become resistant with time or is there a change in the way these infants metabolize the drug such that levels in the bloodstream drop after that time point.  It is almost certainly the latter and in the last 7 years have we really seen any response to this finding?  I would say no for the most part although I don’t work in your unit so hard to say for sure. At least where I practice we pick a dose somewhere between 2.5-5 mg/kg/day and give a load of 10 mg/kg when we start the drug.  From time to time we give a miniload of 5 mg/kg and may or may not increase the dose of maintenance based on the number of apneic events the babies are having.  What if we could be proactive instead of reactive though.  Do the babies need to have multiple events before we act or could we prevent the events from happening at all?

Proactive Treatment With Caffeine

We have known that caffeine clearance increases with postnatal age.  The half-life of the drug shortens from about a week at the earliest gestational ages to 2-2.5 days by term equivalent age.  For those infants who are older such as 32 weeks and above we expect them to be off caffeine (if they need it) within 2-3 weeks so I am not really talking about them but what about the babies born earlier than that or certainly MUCH earlier at 23 and 24 weeks who will be on caffeine possibly till term.  Should one size (dose) fit all?  No it really shouldn’t and some crafty researchers led by Koch G have published a paper that demonstrates why entitled Caffeine Citrate Dosing Adjustments to Assure Stable Caffeine Concentrations in Preterm Neonates.

In this paper the authors armed with knowledge of the half life of caffeine at different gestational ages were able to calculate the clearance of the drug at different postnatal ages to demonstrate in a model of a 28 week male infant weighing 1150g. The authors further took into account predicted weight changes and were able to calculate what the expected caffeine levels would be in the fictional infant at various time points.  The target caffeine levels for this patient were a trough level of 15 -20 mg/L which are the currently acceptable ranges in the literature.  The testing was first done using a standard load of 10 mg/kg (base) followed by 2.5 mg/kg/d (base) and demonstrated levels which yielded the following graph over time. What this demonstrates is that if the dose is unchanged over the first 7 weeks, this hypothetical infant will only achieve effective concentrations for the first week.  Interesting isn’t it that the Cochrane review found clinical effect over the first 2-7 days? What if you were to double the dose to really “hit” the infant with a good dose of caffeine from the start and maintain at that level based on their weight gain as shown next. Well, you will get what you are hoping for and keep the trough level above 15 mg/L but you will hit 30 mg/L that some have said is too high and can lead to adverse effects (ever seen SVT with these high doses? I have).  Like Goldilocks and the Three Bears could there be a dosing strategy that might be just right?  The authors put in another model based on the knowledge of caffeine clearance over time and suggested a strategy in which after the first week the adjusted maintenance doses would be 3 mg/kg/day and 3.5 mg/kg/day in the third to fourth weeks and lastly 4 mg/kg/d in the 5th to 8th week.  Using that dosing schedule the model produced this curve. As you can see, the infant would have a therapeutic target without reaching levels above 30 mg/L and potential for side effects. As many of you read this however you may ask the obvious question. Each of us have seen infants who require higher doses than this to rid themselves of significant apnea and escape reintubation.  Given that this is a mathematical model it assumes that this fictional infant will respond beautifully to a trough level of 15 to 20 mg/L but some will not. Even in the curve shown it is clear that there is some room to go higher in the dosing as the curve is just touching 20 mg/L.

A Suggestion For The Future

What grabbed my attention here is the possibility that we could take a proactive rather than reactive approach to these infants.  Once a small baby is controlled on their dose of caffeine whether it is 2.5, 3, 5 or even 6 mg/kg/d of caffeine should we wait for more events to occur and then react by increasing caffeine?  What if we are too late to respond and the patient is intubated.  What effect does this have on the developing lung, what about the brain that is subjected to bradycardic events with resultant drops in cardiac output and cerebral perfusion.  Perhaps the solution is to work with our pharmacists and plan to increase dosing at several time points in the infants journey through the NICU even if they aren’t showing symptoms yet.  No doubt this is a change in approach at least for the unit I work in but one that should start with a conversation!