Still performing awake intubations in newborns? Maybe this will change your mind.

Still performing awake intubations in newborns? Maybe this will change your mind.

If I look back on my career there have been many things I have been passionate about but the one that sticks out as the most longstanding is premedicating newborns prior to non-emergent intubation.  The bolded words in the last sentence are meant to reinforce that in the setting of a newborn who is deteriorating rapidly it would be inappropriate to wait for medications to be drawn up if the infant is already experiencing severe oxygen desaturation and/or bradycardia.  The CPS Fetus and Newborn committee of which I am a member has a statement on the use of premedication which seems as relevant today as when it was first developed.  In this statement the suggested cocktail of atropine, fentanyl and succinylcholine is recommended and having used it in our centre I can confirm that it is effective.  In spite of this recommendation by our national organization there remain those who are skeptical of the need for this altogether and then there are others who continue to search for a better cocktail.  Since I am at the annual conference for the CPS in Quebec city I thought it would be appropriate to provide a few comments on this topic.

Three concerns with rapid sequence induction (RSI) for premedication before intubation

1. “I don’t need it.  I don’t have any trouble intubating a newborn” – This is perhaps the most common reason I hear naysayers raise.  There is no question that an 60-90 kg practitioner can overpower a < 5kg infant and in particular an ELBW infant weighing < 1 kg.  This misses the point though.  Premedicating has been shown to increase success on the first attempt and shorten times to intubation. Dempsey 2006, Roberts 2006, Carbajal 2007, Lemyre 2009

2.  “I usually get in on the first attempt and am very slick so risk of injury is less.” Not really true overall.  No doubt there are those individuals who are highly successful but overall the risk of adverse events is reduced with premedication. (Marshall 1984, Lemyre 2009). I would also proudly add another Canadian study from Edmonton by Dr. Byrne and Dr. Barrington who performed 249 consecutive intubations with predication and noted minimal side effects but high success rates at first pass.

3. “Intubation is not a painful procedure”.  This one is somewhat tough to obtain a true answer for as the neonate of course cannot speak to this.  There is evidence available again from Canadian colleagues in 1984 and 1989 that would suggest that infants at the very least experience discomfort or show physiologic signs of stress when intubated using an “awake” approach.  In 1984 Kelly and Finer in Edmonton published Nasotracheal intubation in the neonate: physiologic responses and effects of atropine and pancuronium. This randomized study of atropine with or without pancuronium vs control demonstrated intracranial hypertension only in those infants in the control arm with premedication ameliorating this finding.  Similarly, in 1989 Barrington, Finer and the late Phil Etches also in Edmonton published Succinylcholine and atropine for premedication of the newborn infant before nasotracheal intubation: a randomized, controlled trial. This small study of 20 infants demonstrated the same finding of elimination of intracranial hypertension with premedication.  At the very least I would suggest that having a laryngoscope blade put in your oral cavity while awake must be uncomfortable.  If you still doubt that statement ask yourself whether you would want sedation if you needed to be intubated?  Still feel the same way about babies not needing any?

4.  What if I sedate and paralyze and there is a critical airway?  Well this one may be something to consider.  If one knows there is a large mass such as a cystic hygroma it may be best to leave the sedation or at least the paralysis out.  The concern though that there might be an internal mass or obstruction that we just don’t know about seems a little unfounded as a justification for avoiding medications though.

Do we have the right cocktail?

The short answer is “I don’t know”.  What I do know is that the use of atropine, an opioid and a muscle relaxant seems to provide good conditions for intubating newborns.  We are in the era of refinement though and as a recent paper suggests, there could be alternatives to consider;Effect of Atropine With Propofol vs Atropine With Atracurium and Sufentanil on Oxygen Desaturation in Neonates Requiring Nonemergency IntubationA Randomized Clinical Trial.  I personally like the idea of a two drug combination for intubating vs.. three as it leaves one less drug to worry about a medication error with.  There are many papers out there looking at different drug combinations.  This one though didn’t find a difference between the two combinations in terms of prolonged desaturations between the two groups which was the primary outcome. Interestingly though the process of intubating was longer with atropine and propofol.  Given some peoples reluctance to use RSI at all, any drug combination which adds time to the the procedure is unlikely to go over well.  Stay tuned though as I am sure there will be many other combinations over the next few years to try out!

 

 

It’s time to approach nutrition in extreme preemies as if it were a drug

It’s time to approach nutrition in extreme preemies as if it were a drug

One of the benefits of operating this site is that I often learn from the people reading these posts as they share their perspectives.  On a recent trip I was reunited with Boubou Halberg a Neonatologist from Sweden whom I hadn’t seen in many years.  I missed him on my last trip to Stockholm as I couldn’t make it to Karolinska  University but we managed to meet each other in the end.  As we caught up and he learned that I operated this site he passed along a paper of his that left an impact on me and I thought I would share with you.

When we think about treating an infant with a medicinal product, we often think about getting the right drug, right dose and right administration (IV, IM or oral) for maximum benefit to the patient.  When it comes to nutrition we have certainly come a long way and have come to rely on registered dietitians where I work to handle a lot of the planning when it comes to getting the right prescription for our patients.  We seem comfortable though making some assumptions when it comes to nutrition that we would never make with respect to their drug counterparts.  More on that later…

A Swedish Journey to Ponder

Westin R and colleagues (one of whom is my above acquaintance) published a seven year retrospective nutritional journey in 2017 from Stockholm entitled Improved nutrition for extremely preterm infants: A population based observational study.  After recognizing that over this seven year period they had made some significant changes to the way they approached nutrition, they chose to see what effect this had on growth of their infants from 22 0/7 to 26 6/7 weeks over this time by examining four epochs (2004-5, 2006-7, 2008-9 and 2010-11.  What were these changes?  They are summarized beautifully in the following figure.

Not included in the figure was a progressive change as well to a more aggressive position of early nutrition in the first few days of life using higher protein, fat and calories as well as changes to the type of lipid provided being initially soy based and then changing to one primarily derived from olive oil.  Protein targets in the first days to weeks climbed from the low 2s to the mid 3s in gram/kg/d while provision of lipid as an example doubled from the first epoch to the last ending with a median lipid provision in the first three days of just over 2 g/kg/d.

While figure 3 from the paper demonstrates that regardless of time period there were declines in growth across all three measurements compared to expected growth patterns, when one compares the first epoch in 2004-2005 with the last 2010-11 there were significant protective effects of the nutritional strategy in place.  The anticipated growth used as a standard was based on the Fenton growth curves.

What this tells us of course is that we have improved but still have work to do.  Some of the nutritional sources as well were donor breast milk and based on comments coming back from this years Pediatric Academic Society meeting we may need to improve how that is prepared as growth failure is being noted in babies who are receiving donated rather than fresh mother’s own milk.  I suspect there will be more on that as time goes by.

Knowing where you started is likely critical!

One advantage they have in Sweden is that they know what is actually in the breast milk they provide.  Since 1998 the babies represented in this paper have had their nutritional support directed by analyzing what is in the milk provided by an analyzer.  Knowing the caloric density and content of protein, carbohydrates and fats goes a long way to providing a nutritional prescription for individual infants.  This is very much personalized medicine and it would appear the Swedes are ahead of the curve when it comes to this.  in our units we have long assumed a caloric density of about 68 cal/100mL.  What if a mother is producing milk akin to “skim milk” while another is producing a “milkshake”.  This likely explains why some babies despite us being told they should be getting enough calories just seem to fail to thrive.  I can only speculate what the growth curves shown above would look like if we did the same study in units that actually take a best guess as to the nutritional content of the milk they provide.

This paper gives me hope that when it comes to nutrition we are indeed moving in the right direction as most units become more aggressive with time.  What we need to do though is think about nutrition no different than writing prescriptions for the drugs we use and use as much information as we can to get the dosing right for the individual patient!

Part 2: Does prophylactic dextrose gel really work?

Part 2: Does prophylactic dextrose gel really work?

In the first part of this series of posts called Can prophylactic dextrose gel prevent babies from becoming hypoglycemic? the results appeared to be a little lackluster.  The study that this blog post was based on was not perfect and the lack of a randomized design left the study open to criticism and an unbalancing of risks for hypoglycemia.  Given these faults it is no doubt that you likely didn’t run anywhere to suggest we should start using this right away as a protocol in your unit.

Another Study Though May Raise Some Eyebrows

New Zealand researchers who have been at the forefront of publications on the use of dextrose gel recently published another article on the topic Prophylactic Oral Dextrose Gel for Newborn Babies at Risk of Neonatal Hypoglycaemia: A Randomised Controlled Dose-Finding Trial (the Pre-hPOD Study).  As the short study name suggests “Pre-hPOD” this was a preliminary study to determine which dosing of dextrose gel would provide the greatest benefit to prevent neonatal hypoglycemia.  The study is a little complex in design in that there were eight groups (4 dextrose gel vs 4 placebo) with the following breakdown.

Dosing was given either once at 1 h of age (0.5 ml/kg or 1 ml/kg) or three more times (0.5 ml/kg) before feeds in the first 12 h, but not more frequently than every 3 h. Each dose of gel was followed by a breastfeed. The groups given prophylaxis fell into the following risk categories;

IDM (any type of diabetes), late preterm (35 or 36 wk gestation), SGA (BW < 10th centile or < 2.5 kg), LBW (birthweight > 90th centile or > 4.5 kg), maternal use of β-blockers.

Blood glucose was measured at 2 h of age and then AC feeds every 2 to 4 h for at least the first 12 h.  This was continued until an infant had 3 consecutive blood glucose concentrations of 2.6 mmmol/L.  With a primary outcome of hypoglycemia in the first 48 hours their power calculation dictated that a total sample size of 415 babies (66 in each treatment arm, 33 in each placebo arm) was needed which thankfully they achieved which means we can believe the results if they found no difference!

What did they find?

One might think that multiple doses and/or higher doses of glucose gel would be better than one dose but curiously they found that the tried and true single dose of 0.5 mL/kg X 1 offered the best result.  “Babies randomised to any dose of dextrose gel were less likely to develop hypoglycaemia than those randomised to placebo (RR 0.79, 95% CI 0.64–0.98, p = 0.03; number needed to 10.”

Looking at the different cumulative doses, the only dosing with a 95% confidence interval that does not cross 1 was the single dosing.  Higher and longer dosing showed no statistical difference in the likelihood of becoming hypoglycemic in the first 48 hours.  As was found in the sugar babies study, admission to NICU was no different between groups and in this study as with the sugar baby study if one looked at hypoglycemia as a cause for admission there was a slight benefit.  Curiously, while the previous study suggested a benefit to the rate of breastfeeding after discharge this was not noted here.

How might we interpret these results?

The randomized nature of this study compared to the one reviewed in part I leads me to trust these findings a little more than the previous paper.  What this confirms in my mind is that giving glucose gel prophylaxis to at risk infants likely prevents hypoglycemia in some at risk infants and given that there were no significant adverse events (other than messiness of administration), this may be a strategy that some units wish to try out.  When a low blood glucose did occur it was later in the group randomized to glucose gel at a little over 3 hours instead of 2 hours.  The fact that higher or multiple dosing of glucose gel given prophylactically didn’t work leads me to speculate this may be due to a surge of insulin.  Giving multiple doses or higher doses may trigger a normal response of insulin in a baby not at risk of hypoglycemia but in others who might already have a high baseline production of insulin such as in IDMs this surge might lead to hypoglycemia.  This also reinforces the thought that multiple doses of glucose gel in babies with hypoglycemia should be avoided as one may just drive insulin production and the treatment may become counterproductive.

In the end, I think these two papers provide some food for thought.  Does it make sense to provide glucose gel before a problem occurs?  We already try and feed at risk babies before 2 hours so would the glucose gel provide an added kick or just delay the finding of hypoglycemia to a later point. One dose may do the trick though.

A reader of my Facebook page sent me a picture of the hPOD trial which is underway which I hope will definitively put this question to rest.  For more on the trial you can watch Dr. Harding speak about the trial here.

Can prophylactic dextrose gel prevent babies from becoming hypoglycemic?

Can prophylactic dextrose gel prevent babies from becoming hypoglycemic?

I have written a number of times already on the topic of dextrose gels. Previous posts have largely focused on the positive impacts of reduction in NICU admissions, better breastfeeding rates and comparable outcomes for development into childhood when these gels are used. The papers thus far have looked at the effectiveness of gel in patients who have become hypoglycemic and are in need of treatment. The question then remains as to whether it would be possible to provide dextrose gel to infants who are deemed to be at risk of hypoglycemia to see if we could reduce the number of patients who ultimately do become so and require admission.

Answering that question

Recently, Coors et al published Prophylactic Dextrose Gel Does Not Prevent Neonatal Hypoglycemia: A Quasi-Experimental Pilot Study. What they mean by Quasi-Experimental is that due to availability of researchers at off hours to obtain consent they were unable to produce a randomized controlled trial. What they were able to do was compare a group that had the following risk factors (late preterm, birth weight <2500 or >4000 g, and infants of mothers with diabetes) that they obtained consent for giving dextrose gel following a feed to a control group that had the same risk factors but no consent for participation. The protocol was that each infant would be offered a breastfeed or formula feed after birth followed by 40% dextrose gel (instaglucose) and then get a POC glucose measurement 30 minutes later. A protocol was then used based on different glucose results to determine whether the next step would be a repeat attempt with feeding and gel or if an IV was needed to resolve the issue.

To be sure, there was big hope in this study as imagine if you could prevent a patient from becoming hypoglycemic and requiring IV dextrose followed by admission to a unit.  Sadly though what they found was absolutely no impact of such a strategy.  Compared with the control group there was no difference in capillary glucose after provision of dextrose gel (52.1 ± 17.1 vs 50.5 ± 15.3 mg/dL, P = .69).  One might speculate that this is because there are differing driving forces for hypoglycemia and indeed that was the case here where there were more IDMs and earlier GA in the prophylactic group.  On the other hand there were more LGA infants in the control group which might put them at higher risk.  When these factors were analyzed though to determine whether they played a role in the lack of results they were found not to. Moreover, looking at rates of admission to the NICU for hypoglycemia there were also no benefits shown.  Some benefits were seen in breastfeeding duration and a reduction in formula volumes consistent with previous studies examining the effect of glucose gel on both which is a win I suppose.

It may also be that when you take a large group of babies with risks for hypoglycemia but many were never going to become hypoglycemic, those who would have had a normal sugar anyway dilute out any effect.  These infants have a retained ability to produce insulin in response to a rising blood glucose and to limit the upward movement of their glucose levels.  As such what if the following example is at work? Let’s say there are 200 babies who have risk factors for hypoglycemia and half get glucose gel.  Of the 100 about 20% will actually go on to have a low blood sugar after birth.  What if there is a 50% reduction in this group of low blood sugars so that only 10 develop low blood glucose instead of 20.  When you look at the results you would find in the prophylaxis group 10/100 babies have a low blood sugar vs 20/100.  This might not be enough of a sample size to demonstrate a difference as the babies who were destined not to have hypoglycemia dilute out the effect.  A crude example for sure but when the incidence of the problem is low, such effects may be lost.

A Tale of Two Papers

This post is actually part of a series with this being part 1.  Part 2 will look at a study that came up with a different conclusion.  How can two papers asking the same question come up with different answers?  That is the story of medicine but in the next part we will look at a paper that suggests this strategy does work and look at possible reasons why.