Healthy at risk infants failing the infant car seat challenge.  Cause for concern?

Healthy at risk infants failing the infant car seat challenge. Cause for concern?

The infant car seat challenge(ICSC) is a test which most definitely fits the definition of a battleground issue in Neonatology.  After publishing the Canadian Pediatric Practice point on the same topic I received interesting feedback through the various social media forums that I frequent.  While some were celebrating the consensus of the statement as verification that a centres’ non practice of the test was acceptable, others seriously questioned the validity of the position.  The naysayers would point out that extremely infrequent events unless intentionally tracked may be difficult to pick up.  In the case of the ICSC, if a few patients were to suffer a hypoxic event leading to an ALTE or worse after discharge, could the ICSC have picked out these babies and prevented the outcome?  The evidence for adverse events associated with the use of car seats as discussed in the position statement is poor when using autopsy records over decades but when many clinicians can point to a failed ICSC picking up events, the thought goes that they “caught one”.  Does catching one make a difference though?

The Well Appearing Infant

Shah et al in their recent paper Clinical Outcomes Associated with a Failed Infant Car Seat Challenge attempt to address this very point.  They performed a retrospective study of 148 patients who were either <37 weeks GA or < 2500g at birth.  The study was made possible by the fact that all such infants in their hospital admitted to a well newborn area meeting these criteria by policy must have an ICSC prior to discharge.  Keep in mind that these were all infants who were on the well newborn service since they were asymptomatic.  The definition of an event in this group was one or more of pulse oximeter saturation ≤ 85% for > 10 seconds, apnea > 20 seconds, bradycardia < 80 bpm for > 10 seconds, or an apnea or bradycardia event requiring stimulation.  The failure rate was 4.5% which is very similar to other reported studies.

Why did they “fail”?

  • Failure of the ICSC was owing to desaturation 59%
  • Bradycardia 37%
  • Tachypnea 4%
  • Combination of 2 in 11%

What is interesting about these results is what happened to these infants after admission to the NICU in that 39% were identified with apnea (48% in preterm vs 17% in term infants).  These events were in the supine position which is a curious finding since the ICSC was designed to find risk of cardiorespiratory stability in a semi-recumbent position.  This has been shown previously though.

What does it all mean?

The infants in this study ultimately had more NG feeding, prolonged length of stay and septic workups after failing the ICSC that comparable infants who passed.  At first blush one would read this article and immediately question the validity of the CPS position but then the real question is what has this added to the “pool of knowledge”.  That infants may fail an ICSC at a rate of 4.5% is already known.  That such infants may demonstrate apneic events has also been shown before and a study like this may help to support those clinicians who feel it is still imperative to find these infants in order to achieve a safe discharge.  I think it is important to put these findings in the context of what would have happened if such a unit did not routinely test these types of babies.  As all were seemingly well and I presume feeding with their families, they would have been discharged after 24-48 hours to home.  We have no evidence (since they have not compared this sample to a group who did not have such testing) that if these babies were discharged they would have faired poorly.

The supporters of the ICSC would point to all the support these babies received by admitting them for 6-8 days, providing NG feeding and ruling out sepsis that they were unsafe for discharge.  The other possible way to look at it was that the infants were subjected to interventions that we have no evidence helped them.  Whether any of these infants had a positive blood culture justifying antibiotics or needed methylxanthine support is not mentioned.  Judging however by the short length of stay I suspect that none or few of these infants needed such medication as I would expect they would have stayed much longer had they needed medical treatment for apnea.

Conclusion

I do commend the authors for completing the study and while it does raise some eyebrows, I don’t see it changing at least my position on the ICSC.  While they have described a cohort of patients who failed the ICSC nicely, the fundamental question has been left unanswered.  Does any of this matter?  If you look well, are feeding well and free of any clinically recognizable events but are late preterm or IUGR can the ICSC prevent harm?  This has not been answered here and perhaps the next step would be for a centre that has abandoned the ICSC to follow their patients after discharge prospectively and see whether any adverse outcomes do indeed occur.  Any takers?

 

Has permissive hypercapnia failed to deliver?

Has permissive hypercapnia failed to deliver?

Positive pressure ventilation puts infants at risk of developing chronic lung disease (CLD). Chronic lung disease in turn has been linked many times over, as a risk for long term impacts on development.  So if one could reduce the amount of positive pressure breaths administered to a neonate over the course of their hospital stay, that should reduce the risk of CLD and by extension developmental impairment.  At least that is the theory.  Around the start of my career in Neonatology one publication that carried a lot of weight in academic circles was the Randomized Trial of Permissive Hypercapnia in Preterm Infants which randomized 49 surfactant treated infants to either a low (35-45) or high (45-55) PCO2 target with the thought being that allowing for a higher pCO2 should mean that lower settings can be used.  Lower settings on a ventilator would lead to less lung damage and therefore less CLD and in turn better outcomes.  The study in question did show that the primary outcome was indeed different with almost a 75% reduction in days of ventilation and with that the era of permissive hypercapnia was born.

The Cochrane Weigh in

In 2001 a systematic review including this and another study concluded that there was insufficient evidence to support the strategy in terms of a benefit to death or chronic lung disease. Despite this lack of evidence and a recommendation from the Cochrane group that permissive hypercapnia be used only in the context of well designed trials the practice persisted and does so to this day in many places.  A little lost in this discussion is that while the end point above was not different there may still be a benefit of shorter term ventilation.

A modern cohort

It would be unwise to ignore at this point that the babies of the late 90s are different that the ones in the current era.  Surfactant and antenatal steroid use are much more prevalent now.  Ventilation strategies have shifted to volume as opposed to pressure modes in many centres with a shift to early use of modalities such as high frequency ventilation to spare infants the potential harm of either baro or volutrauma.  Back in 2015 the results of the PHELBI trial were reported Permissive hypercapnia in extremely low birthweight infants (PHELBI): a randomised controlled multicentre trial. This large trial of 359 patients randomized to a high or low target pCO2 again failed to show any difference in outcomes in terms of the big ones “death or BPD, mortality alone, ROP, or severe IVH”.  What was interesting about this study was that they did not pick one unified target for pCO2 but rather set different targets as time went on reflecting that with time HCO3 rises so what matters more is maintaining a minimum pH rather than targeting a pCO2 alone which als0 reflects at least our own centre’s practice. There is a fly in the ointment here though and that is that the control group has a fault (at least in my eyes)

Day of life Low Target High Target
1-3 40-50 55-65
4-6 45-55 60-70
7-14 50-60 65-75

In the original studies of permissive hypercapnia the comparison was of a persistent attempt to keep normal pCO2 vs allowing the pCO2 to drift higher.  Although I may get some argument on this point, what was done in this study was to compare two permissive hypercapnia ranges to each other.  If it is generally accepted that a normal pCO2 is 35-45 mmHg then none of these ranges in the low target were that at all.

How did these babies do in the long run?

The two year follow-up for this study was published in the last month; Neurodevelopmental outcomes of extremely low birthweight infants randomised to different PCO2 targets: the PHELBI follow-up study. At the risk of sounding repetitive the results of Bayley III developmental testing found no benefit to developmental outcome.  So what can we say?  There is no difference between two strategies of permissive hypercapnia with one using a higher and the other a lower threshold for pCO2.  It doesn’t however address the issue well of whether targeting a normal pCO2 is better or worse although the authors conclude that it is the short term outcomes of shorter number of days on ventilation that may matter the most.

The Truth is Out There

I want to believe that permissive hypercapnia makes a difference.  I have been using the strategy for 15 or so years already and I would like to think it wasn’t poor strategy.  I continue to think it makes sense but have to admit that the impact for the average baby is likely not what it once was.  Except for the smallest of infants many babies these days born at 27 or more weeks of gestation due to the benefits of antenatal steroids, surfactant and modern ventilation techniques spend few hours to days on the ventilator.  Meanwhile the number of factors such chorioamniotitis, early and late onset sepsis and genetic predisposition affect the risks for CLD to a great degree in the modern era.  Not that they weren’t at play before but their influence in a period of more gentle ventilation may have a greater impact now.  That so many factors contribute to the development of CLD the actual effect of permissive hypercapnia may in fact not be what it once was.

What is not disputed though is that the amount of time on a ventilator when needed is less when the strategy is used.  Let us not discount the impact of that benefit as ask any parent if that outcome is of importance to them and you will have your answer.

So has permissive hypercapnia failed to deliver?  The answer in terms of the long term outcomes that hospitals use to benchmark against one and other may be yes.  The answer from the perspective of the baby and family and at least this Neonatologist is no.

Parents,What Are You Worried About?

Parents,What Are You Worried About?

Throughout my career one thing has been consistently true.  That is that wherever I was working and regardless of the role I have been an educator.  I imagine the blog to a great extent is related to my interest in this aspect of my work.  In the last few years much has been said about care by parents whether it be a general approach for family centred care or in formalized approaches such as FiCare which has also been formally studied in the research setting.  When we speak of family centred care, one thing that I am constantly reminded of is that the focus of all of our efforts must be on the family and the patient.  As I said recently to a colleague when discussing what was presented as a difficult discussion with another colleague due to a disagreement about the direction of management, when you put the patient first the discussion really isn’t difficult at all.  It’s not about you or a colleagues ego but about the patient and if the management is not up to par then change direction and worry about managing egos later.

What We Know And What They Know

Another aspect that needs to be addressed is the difference in power that we have through knowledge.  I am not talking about us exerting authority over families but from the perspective of us having the knowledge from years of experience in the field as to what is significant and what is not in terms of events in the NICU.  The evidence for example with respect to neurodevelopmental outcome from apnea and bradycardia should give us reason to be optimistic the majority of the time.  While in Edmonton I learned a great deal from one of my colleagues who  was the lead author in a paper entitled Early childhood neurodevelopment in very low birth weight infants with predischarge apnea.  While frequent apnea may be associated with mild motor impairments in their paper, the predictive value of these predischarge recordings is very limited when you take away those kids without severe IVH.  I think about all of the parents we see who have their eyes glued to the monitors while they attend at the bedside and what they must be thinking.  To us it is just a matter of time but I wonder for them how agonizing a time it really is!  It isn’t just those infants who are nearing discharge and having apnea either as the CAP study  at 5 years of age showed no difference in survival without disability in those infants who received caffeine vs those who did not.  More frequent events may not be that detrimental after all.  I am not suggesting we not treat patients as one never knows where the threshold lies to cause injury but these preemies are certainly made of some tough stuff.

Identifying Stress and Preparing Parents For it

The first step in dealing with this issue is to know it is there.  Recognizing this, Melnyk and others performed an educational intervention targeting behaviour of families in their study Reducing premature infants’ length of stay and improving parents’ mental health outcomes with the Creating Opportunities for Parent Empowerment (COPE) neonatal intensive care unit program: a randomized, controlled trial.  The group of parents who went through the program had better mental health outcomes compared to the control groups.  The issue here and really is at the crux of the goal in writing all of this is that the stress that parents feel may not be overtly present.  The squeaky wheel as the saying goes gets the grease and the parents that are demonstrating signs of poor coping are the first to draw the referrals to social work or engage in a deeper conversation with nursing at the bedside.  All parents experience stress at least to a certain degree and it is all of our jobs to tease it out.  On the other hand employing standardized approaches such as the COPE program for all parents might be another way of helping those who are in need but not clearly wearing a sign on their foreheads that say “help me”.

Don’t Underestimate the Power of Reassurance

1414165926454_wps_11_Doctor_Reassuring_his_Pat.jpgSo we know that much of what we see on the monitors will not lead to long term harm, transient central cyanosis during feeds will not damage the brain and apnea of prematurity is a distinct entity from SIDS.  The parents on the other hand commonly make these links and additionally in case no one has mentioned it to you, those babies with TTN may one day develop asthma and those with hypoglycemia may have diabetes (we know both not to be true but I have been asked about this many times).  This is why I believe it is our duty to explain why we are not worried about things that come up in the unit.  Saying “don’t worry” or “that is normal preterm behaviour” may not be enough.  Ask a parent what it is they are worried about and you may be surprised to find out the links that they have made in their heads, some of which may be valid but some completely false.  I am not meaning to trivialize their concerns but rather validate them as real worries.  If we have the knowledge and it is power as I said before then shouldn’t we use that power to help reduce their stress?

Engaging Families Can Reap Huge Dividends

The movement towards family centred care and more specifically care by parent will have a dramatic impact on this issue.  As more and more centres move to engaging families to be part of rounds and not just listen and then ask questions but to take some degree of control and provide some of the reporting stress will be reduced.  It is only logical.  The more a family comes to understand what is significant and what is not in terms of reporting concerns the more confident they will be.  Moreover, spending more time at the bedside leads to more skin to skin care and with that shorter hospital stays due to better cardiorespiratory stability.  We aren’t there yet but we are headed in the right direction.  In the meantime, take the time to ask a simple question “what are you worried about” to parents no matter how confident and strong they appear and you may find yourself with an opportunity to harness the power of education you have a make a real difference to a family in need.

A Cure For Neonatal Hypoglycemia

A Cure For Neonatal Hypoglycemia

I have probably received more requests for our glucose gel protocol than any other question since I started writing on this blog.  Dextrose gel has been used more and more often for treatment of hypoglycemia such that it is now a key strategy in the management of low blood sugar in ours and many other institutions.  If you are interested in the past analyses of the supporting trials they can be found in these posts; Glucose gel For Managing Hypoglycemia. Can We Afford Not To Use It? and Dextrose gel for hypoglycemia: Safe in the long run?  As you can tell from these posts I am a fan of dextrose gel and eagerly await our own analysis of the impact of using gel on NICU admission rates for one!

But What If You Could Prevent Hypoglycemia Rather Than Treating It?

This is the question that the same group who has conducted the other trials sought to answer in their dose finding study entitled Prophylactic Oral Dextrose Gel for Newborn Babies at Risk of Neonatal Hypoglycaemia: A Randomised Controlled Dose-Finding Trial (the Pre-hPOD Study).  I suppose it was only a matter of time that someone asked the question; “What if we prophylactically gave at risk babies dextrose gel?  Could we prevent them from becoming hypoglycemic and reduce admissions and improve breastfeeding rates as has been seen with treatment of established hypoglycemia?”  That is what they went out and did.  The group selected at risk patients such as those born to mothers with any type of diabetes, late preterm infants, SGA and others typically classified as being at risk but who did not require NICU admission at 1 hour of age when treatment was provided.  The primary outcome was hypoglcyemia (<2.6 mmol/L) in the first 48 hours.  Secondary outcomes included NICU admissions, breastfeeding rates in hospital and after discharge as well as formula intake at various time points.

The study sought really to serve as a pilot whose goal was to determine when compared to placebo whether several different regimens could prevent development of hypoglycemia.  The groups were (with the first dose in each case given at 1 hour of age):

  1. Single dose of 40% dextrose gel – 0.5 mL/kg
  2. Single dose of 40% dextrose gel – 1 ml/kg
  3. Four doses of 0.5 mL/kg given every three hours with breastfeeding
  4. A single dose of 1 mL/kg then 3 X 0.5 mL/kg given q3h before each breastfeed.

In total 412 patients were randomized into 8 different groups (4 treatment and 4 placebo).

As The Saying Goes, Less Is More

odds-of-hypoglycemia

The only dose of dextrose that reduced the risk of hypoglycemia in the first 48 hours was 0.5 mL/kg which provides 200 mg/kg of dextrose which is the same as a bolus of IV dextrose when giving 2 mL/kg of D10W.  Curiously using a higher dose or using multiple doses had no effect on reducing the risk.  Based on a difference of 14% between placebo and this group you would need to treat roughly 7 patients with dextrose gel once to prevent one episode of hypoglycemia.  Also worth noting is that admission to NICU was no different but if one restricted the reason for admission to hypoglycemia the difference was significant (13% vs 2% risk; p = 0.04).  What was not seen here was a difference in rates of breastfeeding and much effect on use of formula.

Why Might These Results Have Occurred?

Insulin levels were not measured in this study but I truly wonder if the reason for hypoglycemia in the other groups may have been transient hyperinsulinemia from essentially receiving either a very large load of glucose (1 mL/kg groups) or effectively 4 boluses of glucose in the first 12 hours of feeding.  Rebound hypoglycemia from IV boluses is a known phenomenon as insulin levels surge to deal with the large dextrose load and I can’t help but wonder if that is the reason that all but the single dose regimen had an effect.  It is also worth commenting that with so many secondary outcomes in this study the p values needed to reach significance are likely much smaller than 0.05 so I would take the reduction in NICU admissions for hypoglycemia with a grain of salt although at least the trend is encouraging.

I wouldn’t change my practice yet and the authors do acknowledge in the article that a much larger study is now being done using the single dose of 0.5 mL/kg to look at outcomes and until that is published I don’t think a practice change is in order.  What this study does reinforce though is that providing multiple doses of dextrose gel may yield diminishing returns.  While the goal here was prophylaxis, I can’t help but think about the patients who are symptomatic and receive two or three gels and still wind up with an IV.  Could it be the same rebound hypoglycemia at play?

We also have to acknowledge that even if this is an effective preventative strategy, is it in the best interests of the babies to all receive such treatment when at least in 6 babies they wouldn’t have needed any?  Could such treatment simply be reserved as has been done for those who develop hypoglycemia?  Those who question the safety of the ingredients such as dyes that are found in the product may want some long term safety data before this becomes routine in at risk babies but it won’t surprise me if such strategies become commonplace pending the results of the larger trial on the way.

Stop guessing when the NICU team is needed at a delivery

Stop guessing when the NICU team is needed at a delivery

The other day I met with some colleagues from Obstetrics and other members from Neonatology to look at a new way of configuring our delivery suites.  The question on the table was which deliveries which were always the domain of the high risk labour floor could be safely done in a lower acuity area.  From a delivery standpoint they would have all the tools they need but issues might arise from a resuscitation point of view if more advanced resuscitation was needed.  Would you have enough space for a full team, would all the equipment you need be available and overall what is in the best interests of the baby and family?

We looked at a longstanding list of conditions both antenatal and intrapartum and one by one tried to decide whether all of these were high risk or if some were more moderate.  Could one predict based on a condition how much resuscitation they might need?  As we worked our way through the list there was much discussion but in the end we were left with expert opinion as there was really no data to go by.  For example, when the topic of IUGR infants came up we pooled our collective experience and all agreed that most of the time these babies seem to go quite well.  After a few shoulder shrugs we were left feeling good about our decision to allow them to deliver in the new area.  Now several days later I have some concern that our thinking was a little too simple.  You see, conditions such as IUGR may present as the only risk factor for an adverse outcome but what if they also present with meconium or the need for a instrument assisted delivery.  We would presume the risk for advanced resuscitation (meaning intubation or chest compressions and/or medication need) would be increased but is there a better way of predicting the extent of this risk?

Indeed there might just be

An interesting approach to answer this question has been taken by an Argentinian group in their paper Risk factors for advanced resuscitation in term and near-term infants: a case–control study.  They chose to use a prospective case control study matching one case to 4 control infants who did not require resuscitation.  The inclusion criteria were fairly straightforward.  All babies had to be 34 weeks gestational age or greater and free of congenital malformations.  By performing the study in 16 centres they were able to amass 61953 deliveries and for each case they found (N=196) they found 784 deliveries that were matched by day of birth.  The idea here was that by matching consecutive patients who did not require resuscitation you were standardizing the teams that were present at delivery.

The antepartum and intrapartum risk factors that were then examined to determine strengths of association with need for resuscitation were obtained from the list of risks as per the NRP recommendations.

A Tool For All of Us?

What came out of their study was a simple yet effective tool that can help to predict the likelihood of a baby needing resuscitation when all factors are taken into account.   By resuscitation the authors defined this as intubation, chest compressions or medications.  This is pretty advanced resuscitation!  In essence this is a tool that could help us answer the questions above with far better estimation than a shoulder shrug and an “I think so” response.  The table can be found by clicking on this link to download but the table looks like this.

risk-calculator

By inserting checks into the applicable boxes you get a calculated expected need for resuscitation.  Let’s look at the example that I outlined at the start of the discussion which was an IUGR infant. It turns out that IUGR itself increases the background risk for infants 34 weeks and above from 6% to 55% with that one factor alone.  Add in the presence of fetal bradycardia that is so often seen with each contraction in these babies and the risk increases to 97%!  Based on these numbers I would be hesitant to say that most of these kids should do well.  The majority in fact would seem to need some help to transition into this world.

Some words of caution

The definition here of resuscitation was intubation, chest compressions or medications.  I would like to presume that the practioners in these centres were using NRP so with respect to chest compressions and medication use I would think this should be comparable to a centre such as ours.  What I don’t know for sure is how quickly these centres move to intubate.  NRP has always been fairly clear that infants may be intubated at several time points during a resuscitation although recent changes to NRP have put more emphasis on the use of CPAP to establish FRC and avoid intubation.  Having said that this study took place from 2011 – 2013 so earlier than the push for CPAP began.  I have to wonder what the effect of having an earlier approach to intubating might have had on these results.  I can only speculate but perhaps it is irrelevant to some degree as even if in many cases these babies did not need intubation now they still would have likely needed CPAP.  The need for any respiratory support adds a respiratory therapist into the mix which in a crowded space with the additional equipment needed makes a small room even smaller.  Therefore while I may question the threshold to intubate I suspect these results are fairly applicable in at least picking out the likelihood of needing a Neonatal team in attendance.

Moreover I think we might have a quick tool on our hands for our Obstetrical colleagues to triage which deliveries they should really have us at.  A tool that estimates the risk may be better than a shoulder shrug even if it overestimates when the goal is to ensure safety.

 

A blog post on well…physician bloggers

A blog post on well…physician bloggers

This is a posting of an article in Pediatrics.  Always wondered whether this little venture of mine would be studied.  Not this blog in particular but the whole concept in general!  The credit of course for this post is not mine but Dr. Moreno who wrote the piece but as the link wouldn’t work well on the Facebook page independently here you go.
Mastering the Media: Physician bloggers identify benefits, barriers to using social media
Megan A. Moreno, M.D., M.S.Ed., M.P.H., FAAP
Dr. Moreno
Dr. Moreno

A growing number of physicians use social media as a professional platform for health communication. This trend is not lost on medical students and residents, who are among the demographic described as “most connected” via social media.In 2014, a medical student asked me to serve as her mentor for a public health research project. The student, Lauren Campbell, was interested in studying how physician bloggers see themselves and their role as bloggers, as well as the benefits and risks of blogging as a doctor. Given the newness of physician blogging, the purpose of the study was to understand the perspectives and experiences of physicians who could be considered early adopters of using social media to distribute health information.

We recruited physicians to take part in the study through website searches for physician bloggers, and in-depth telephone interviews were conducted with those who agreed to participate. At the end of the interview, participants were asked if they could recommend other physician bloggers, a technique known as “snowball sampling.”

Seventeen physicians participated in the study, which recently was published in BMC Medical Informatics and Decision Making (http://bit.ly/2bFtno9). About one-third were female and 76% were pediatricians.

Transcripts were analyzed for common themes mentioned across interviews.

Participants identified multiple perceived benefits and barriers to social media use by physicians. Benefits included forwarding career endeavors, keeping up with medical literature and increasing public exposure for their practice. Barriers included time, administrative hurdles to get permission from their institution to blog and fear of saying the wrong thing.

In addition, four major themes were commonly discussed across interviews. First, participants often saw themselves as “rugged individualists” who set their own rules for social media health communications, like cowboys taming the Wild West.

Second, participants expressed uncertainty about boundaries and strategies for social media use. They identified many gray areas such as what to post, how to post and how to set boundaries.

Third, an interesting and unexpected finding was that most of the physician bloggers described using social media much like traditional media, as a one-way communication platform or “soapbox” rather than as an interactive forum.

Finally, participants had disparate views regarding the time involved in social media use; some felt they could fit blogging into their day, while others saw it as an impediment to patient care.

From this study, we concluded that much uncertainty remains regarding roles and responsibilities of physicians providing medical content within social media, and opportunities exist for providers to use social media platforms interactively and to their full potential.

It’s worth considering how the AAP Council on Communications and Media or the Academy could develop best practices to address some of this uncertainty and provide physicians with training or tools to use social media for its true interactive purpose. The hope is that future studies will investigate these key topics so the “Wild West” of physician blogging will become an integrated metropolis.

Dr. Moreno is a member of the AAP Council on Communications and Media Executive Committee. 

Copyright © 2016 American Academy of Pediatrics